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SUMMARY 

T h r e e  computer  p r o g r a m s  w e r e  developed to  s e r v e  as  "Design Tools" 
for  u s e  in the p re l imina ry  des ign  of Sa turn  Nose F a i r i n g s .  
synthesize n e a r  -opt imum s t r u c t u r a l  a r r angemen t s  for  r ing - stiffened, hone\- - 
c o m b  sandwich, and r ing -  s t r inge r  - stiffened methods of construct ion.  Sepa - 
ratc manuals  desc r ibe  these  p r o g r a m s ,  and fu rn i sh  ins t ruc t ions  for  t he i r  u s e .  

The p r o g r a m s  

Th i s  r epor t  has  as  one of its objectives the presenta t ion  of ce r t a in  
optimization data  der ived  by using the t h r e e  p r o g r a m s .  
la rge ly  of graphs  which show the  dependence of shroud sect ion weights upon 
m a j o r  design va r i ab le s .  

The data  cons is t  

Brief d i scuss ions  a r e  p re sen ted  w h e r e  appropr i a t e .  

. .  
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Before the beginning of this  cont rac t ,  a substant ia l  amount  of work  

The  ini t ia l  work  w a s  done by Nevins 
had a l r eady  gone into the development and u s e  of computer  p r o g r a m s  for 
thc p r e l i m i n a r y  design of nose  fair ings.  
and Helton (Refr,rence l ) ,  who developed p r o g r a m s  for the opt imizat ion of 
r ing-st i f fened biconic fa i r ings .  This  w a s  followed by the  w o r k  pe r fo rmed  
I J J  Landis  a t  Lockheed, a l s o  on ring-stiffened cone-p lus- f rus tum configura-  
t i ons .  
c,arl icr work  of N c > v i n s  
tIL'nerate weight data  needed for a nose shape optimization study in  p r o g r e s s  
a t  Lo c kheed . 

The work  of Landis  was  essent ia l ly  an  extension and re f inement  of the 
and Helton, the p r i m a r y  purpose  of which was to 

Acconipl ishments  under  the p re sen t  con t r ac t  include the following: 

1 .  P e r m i s s i b l e  ex terna l  geometr ies  w e r e  extended t o  include configura-  
t ions that include cy l inders  

2 .  P r o g r a i n s  w e r e  developed which synthesize nea r -op t imum des igns  
using sk in- r ing-  s t r inge r  and sandwich construct ions 

3. I i - n p r o \ / ~ ~ d  ana lys i s  techniques and additional design options w e r e  
ddded i o  the ring -plus -skin p rogram.  

INTRODUCTION 

The  study objective w a s  to develop and u s e  t h r e e  computer  p rogra ins  
i o r  the p re l imina ry  design of Sa tu rn  Nose Fa i r ings .  
construct ion w e r e  cons idered:  

T h r e e  types of shel l  

1 .  King - stiffened 

2. Ring-s t r inger  st iffened, and 

3 .  Honeycomb sandwich. 

The  intended u s e  of the  p r o g r a m s  i s  to s e r v e  as  "Design Tools" with 
which reasonably  accu ra t e  s t r u c t u r a l  proportioning of nose  sh rouds  can  be 
rapidly acconipl ished.  As such,  these  "Design Tools" wil l  provide in fo rm-  
ation on opt imum de s igns that  wil l  r equ i r e  only re f inement  for  h a r d w a r e  
design.  
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TEC "IC AL DISCUSSION 

T w o  t a s k s  w e r e  pe r fo rmed  during the c o u r s e  of the study: 

1 .  T h r e e  computer  p r o g r a m s  w e r e  developed 

2 .  T h e s e  p rogra ins  w e r e  used t o  optimize a specified design.  

T a s k  (1)  w a s  by fa r  the  l a r g e r  job,  with t a s k  ( 2 )  being p r i m a r i l y  a 
d t~ inons t ra t ion  of the operabi l i ty  of the t h r e e  p r o g r a m s .  To enhance the 
uscfulness  of the p r o g r a m s ,  s epa ra t e  manuals  (References  2 ,  3 ,  and 4)  
w e r e  p r e p a r e d  for  each  p r o g r a m .  These  manua l s  contain the following 
ma te  r i a l :  

1 .  An ove ra l l  descr ip t ion  of the p r o g r a m  

2 .  Operat ing ins t ruc t ions ,  including a sample  problem 

3 .  A discuss ion  of the ana lyses  used 

4. A p r o g r a m  l is t ing,  and 

5. Definitions of m a j o r  symbols  used .  

T h e  manuals  a r e  genera l ly  similar to a previously published manual ,  Re f -  
e r ence  5 .  

Th i s  r e p o r t  has  a s  its p r i m a r y  objective the presenta t ion  of opti ini-  
z,ition da t a ,  a s  outlined in  Reference  6 .  
i l lus t ra ted  by F igu re  1 .  
Table  I ,  near -opt imum weights w e r e  de te rmined  for the shroud cy l indr ica l ,  
f rustuin,  and conical  sec t ions  using each  of the t h r e e  methods of construct ion 
R c s u l t s  a r e  shown in Table  II. 
used in a r r iv ing  a t  these  r e s u l t s  - -  both in choosing p rac t i ca l  p r o g r a m  in -  
put cons t r a in t s  and in  re jec t ing  ce r t a in  des igns  that  had pa r t i cu la r ly  unde-  
s i r a b  1 c' f e a tur  e s .  

The ex terna l  geomet ry  used  i s  
F o r  this shape and the key assumpt ions  shown in  

Some "prac t ica l  engineer ing judgement" \\'as 

During the p r o c e s s  of p r o g r a m  development ,  a substant ia l  number  
0 1  individual design opt imizat ions w e r e  m a d e  for  each  of the t h r e e  inethods 
01 construct ion.  F r o m  these  optimizations s e v e r a l  significant t r e n d s  have 
b(bcn obstrvccl .  
11)(.  n a t u r e  of the t r end  (or  somet imes  the lack  of a well-defined t r end)  \ i d s  
sup r i s ing .  Some of those findings which appear  to  be m o s t  in te res t ing  a r c  
p rc scn ted  graphica l ly  and d iscussed  v e r y  br ief ly  in  the sect ions \vliich iollo\v. 

M o s t  of the t r ends  w e r e  ant ic ipated.  In a few ins t ances ,  

R i n g s  and Skin 

M i n i n i u i n  p rac t i ca l  conical section weight o c c u r s  wi th  a l a r g e  niiinber 
of r ings ,  a s  indicated by F igu re  2 .  
S (  ( t i o n ,  a s  evidenced b y  F igu re  3. 

The s a m e  t rend  holds in the i rus tun .  
Both of these  c u r v e s  p r e s e n t  r e su l t s  

2 
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i i s i n z  ' ~ e e  r ings with R / t  r a t ios  of 1 5  and A/t r a t io s  of 18 ( see  F igu re  113). 
'iV:,ile reasona?,le var ia t ions  in B/t produce l i t t l e  change in weight,  s o m e  im- 
pro\-eri;cnt i'an lie achieved by using l a r g e r  values  of A/t. 
ti-<: s u m  of cone and f r u s t u m  weights depends upon A/t. 

F igu re  4 shows hoxx, 

Note f r o m  F igure  2 that  imposit ion of a 600 0 F cons t ra in t  does  not 

introduce a .veight penalty in the conical sec t ion ,  a fact  con t r a ry  to init ial  
expectations and findings.  
of r ings in each f rus tum of the cone as a des ign  var iab le ,  i r r e s p e c t i v e  of 
clo s e s t spac i n g  . 

This  was  d iscovered  by t reat ing the total  number  

1Iinirnum weight is a l s o  achieved in the cy l indr ica l  sect ion with c lose  
r i n g  spacing.  
c ~ l i n d c r s ,  Shanley ' s  method and the method of Baruch  and Singer .  
u s i n g  both methods a r e  p re sen ted  in  F igu re  5,  which shows cy l indr ica l  
s c c  tion weight a s  a function of the number of r ings  used .  
Bdruch and Singer  is p re fe rab le ,  and is used  in  the f inal  ve r s ion  of the p r o -  
g ra in .  

Two methods of genera l  instabi l i ty  ana lys i s  w e r e  used  for  
Resu l t s  

The ana lys i s  o i  

The  numer i ca l  technique of solving the Baruch-Singer  equations w a s  
developed by A.  B. Burns of LMSC's Solid Mechanics  Labora to ry .  B u r n ' s  
solution of the Baruch-Singer  equations p e r m i t s  inclusion of l a t e r a l  p r e s s u r e  
etic,cts, e i ther  burst ing o r  collapsing. 
the sensi t ivi ty  o i  op t imum s t r u c t u r a l  weight t o  in te rna l  s ta t ic  p r e s s u r e  dif-  
f c r cn t i a l  ( f ro in  f r e e s t r e a m )  at the t ime of m a x i m u m  externa l  loads .  
f r o m  F igure  6 that the sensi t ivi ty  i s  l a rge  for  des igns  with widely spaced 
r ings ,  l e s s  for  des igns  with c lose ly  spaced r ings .  

T h i s  capabili ty w a s  usctl LO a s s e s s  

Note 

Honeycomb Sandwich 

If no in t e rmed ia t e  r ings  a r e  used,  min imum conical  and f r u s t u m  
scct ion \ \eight is achieved.  A f a i r l y  substant ia l  penalty i s  introduced by 
using additional r i ngs ,  as  is shown by F i g u r e s  7 and 8. 
F i g u r e  i l l u s t r a t e s  graphical ly  the effect of introducing var ious  m i n i m u m  
f a c e  th ickness  cons t r a in t s .  
scc t ion ,  a s  i l l u s t r a t ed  by F igu re  9 .  

Note that  the s a m e  

S imi l a r  effects a r e  found in  the cy l indr ica l  

A11 of t hese  r e s u l t s  w e r e  achieved when the  final ve r s ion  of the sand-  
Ivich p r o g r a m  w a s  used ,  which embodies a s  a subrout ine the buckling ana l -  
y s i s  p r o i r a m  developed by B. 0. Almroth.  An e a r l i e r  vers ion  of th i s  p r o -  
g ran i  used  a l e s s  des i r ab le  modified "equivalent EI" approach to panel  des ign ,  
with 1)uc~kling ana lyses  based on t h e  s a m e  techniques used in skin-plus  - r ings  
des ign ,  and desc r ibed  in Reference  5. 
avtiilaljle for  u s e  in  this  r epor t  and a r e  included h e r e  in F igu res  10,. 11,  and 
1 2 .  
i n t e re s t ing  to note from F igure  11 that a weight penalty of approximatel l -  10% 
is introduced by using s tandard  gauges. 

Resul t s  of this e a r l i e r  approach \vere 

Note that r e su l t s  f r o m  the two approaches a r e  general ly  s i m i l a r .  It i s  

'The joint  configuration used for weight calculat ions i s  shown in  F i c u r e  
1 3 .  P a n e l  e d g e  m e m b e r s  w e r e  conservat ively ignored in deterniininq the riny 
cffcscti\ e moment  of i ne r t i a .  iVo weight i n c r e a s e s  w e r e  added for longitudinal 
sp l i ces  and  aerodynamic  heating effects w e r e  ignored in ttie sandwich s tudies .  

3 



In the cyl indrical  section, minimum prac t i ca l  weight occur s  with 

Th i s  pa r t i cu la r  graph is for  a design using 144 z c c ~  
about half a s  many r ings  a s  i n  a r ing-sk in  s t r u c t u r e .  Typical r e s u l t s  a r e  
shown in F igure  14. 
sc,ction s t r i n g e r s  in the f i r s t  bay. In upper bays,  the p r o g r a m  ha1vc.s thc 
nunil,cr of s t r i n g e r s  i f  th is  l eads  to  a m o r e  efficient design - -  then halves 
the nurriher again in  the next bay if this is  l igh ter ,  e t c .  In this  particulai-  
ins tance .  the minimum number of s t r inge r s  w a s  not allowed to htconie  1c.ss 
than 18. Fo r  m o s t  of the des igns  represented  on Figure  14, the number 
of s t r i n g e r s  actual ly  did d e c r e a s e  t o  18, usual ly  fa i r ly  quickly. 

For ce r t a in  appl icat ions,  such a design m a y  not be acceptable .  Ac-  
corclinglJ-, a design study was made  in which the previously desc r ibed  halv-  
i n g  prc,ccss was not allowed. 
optimuiii weight dc te rmined  a s  a function of the number  of r ings  used .  R e -  
su l t s  a r e  shown by F igure  15. 

The number of s t r i n g e r s  was  held a t  144, and 

Note that  t he re  i s  a re la t ively sma l l  penalty for not dec reas ing  the 
numbcr of s t r i n g e r s  in the upper  bays,  and that the t r ends  of weight v e r s u s  
nuiiibcr of r ings  a r e  sl ightly different f r o m  the c a s e  where  the number  of 
s t r i n g e r s  was  dec reased .  

In der iving data  f o r  the s tudies  descr ibed  above, a beam column 
ana lys i s  w a s  used for  the s t r i n g e r s ,  and ring moment  of i ne r t i a  r equ i r emen t s  
worc  dcLtermined using Shanley’s  method. This  approach  m a k e s  i t  convenient 
f o r  one to  examine the effects of l a t e ra l  p r e s s u r e ,  e i ther  burst ing o r  c r u s h -  
ing.  

Such an  examination was  made.  At the t ime of maximum a q  , i n -  
t e r n a l  p r e s s u r e s  of 

1 .  ambient  

2 .  0 . 5  p s i  below ambient  

3 .  1 . O  ps i  below ambient ,  and 

4.  0 . 5  ps i  above ambient  

w ( x r c  a s sumed ,  and des igns  optirnized for  var ious  numbers  of r ings  for each  
o f  the lour  assumpt ions .  Resul t s  f r o m  this  examination a r e  shown in Figlii-c 
1 0 .  ‘Tllis par t icu lar  graph  is  for  a design using 144 s t r i n g e r s  in the f i r s t  
bdy ,  with thc number of s t r i n g e r s  decreased  by halving in an optimum m h n -  
nc.1- as the. design p r o g r e s s e d  upward.  
a t l o w t d  was 18. 

The minimum number  of s t r i n g e r s  

A s imi l a r  examination was made for designs with 144 s t r i n g e r s  con-  
t inued  tliroug!iout thc cyl indrical  section. 
p r - ( ~ s r ~ n t e d  in  F igure  1 7 .  

Data f r o m  this examination is 

4 



F o r  both of t hese  examinat ions,  the r e s u l t s  w e r e  as  ant ic ipated fo r  
L a s e s  \\!here c rush ing  p r e s s u r e  ( internal  p r e s s u r e  lower than ambient )  w a s  
i inposed - - i . e  . ,  the s t r u c t u r e s  became significantly heavier  with inc reas ing  
crushing p r e s s u r e .  
11)- increas ing  crushing p r e s s u r e .  

Weight v e r s u s  spacing t r e n d s  w e r e  essent ia l ly  unchanged 

F o r  c a s e s  with burs t ing  p r e s s u r e ,  the r e s u l t s  w e r e  completely un-  

Th i s  effect  i s  shown 

e' 

expected.  Instead of p r e s s u r e  stabil ization making the s t r u c t u r e s  l ighter  
i n  weight,  a pronounced i n c r e a s e  i n  weight occur red .  
b\- F i g u r e s  16  and 17. Apparently the r e a s o n  for  the weight i n c r e a s e  is  that  
\\Then a s t r i n g e r  is being analyzed,  the p r o g r a m  f i r s t  checks  the s ign of N 

the l ine load. When N i s  compress ive ,  the m a x i m u m  compress ive  bending 
s t r e s s  is  de te rmined  by using a beam column ana lys i s ,  and the  r e s u l t s  added 
to  the d i r e c t  compress ive  s t r e s s .  

imaximui-ri tension bending s t r e s s  is de te rmined  and added to  the d i r e c t  t en -  
s i l e  s t r e s s .  
s t r e s s e s  can  become governing, which l eads  to  apprec iab le  i n c r e a s e s  in 

\TU' eight.  

@ 

Likewise,  i f  N4, is  a tens i le  load,  the 

When a significant bursting p r e s s u r e  i s  p r e s e n t ,  the tens i le  

It could be a rgued  with s o m e  justif ication that  the ana lys i s  techniques .4, 

used in discovering th i s  su rp r i s ing  t rend ignore  impor tan t  f ac to r s .  'I- 

e f ' fcct  should be invest igated fu r the r .  
Th i s  

At tempts  w e r e  made  to  de te rmine  t r e n d s  of weight v e r s u s  the n u m -  
b e r  o f  s t r i n g e r s  used .  Although r e su l t s  w e r e  somewhat  disappointing, the 
following f ac t s  became apparent  f r o m  these  a t t empt s .  

1 .  Tn the cyl indrical  sect ion,  r ing and s t r inge r  spacing effects  a r e  quite 
i n t e r r e l a t ed ,  a s  shown by Figure  18. In r e t r o s p e c t ,  th i s  kind of 
re la t ionship  i s  obviously to be expected. 

2 .  In the cone and f r u s t u m  sect ions,  a similar r ing - s t r inge r  re la t ionship 
c x i s t s .  However ,  the p r o g r a m ' s  op t imum s t r inge r  halving p r o c e s s  
i n  the upper  bays - -  along with p rac t i ca l  s t r i n g e r  t o  6: dis tances  
gipparently- rLL:;kcs poss ib le  the synthesis  of a wide range  of des igns  
1i:Lving essent ia l ly  ident ical  weights. F igu re  19  gives s o m e  typical 
r e  sul  t s . 

Perhaps thc most  impor tan t  is  the radial  extensional r e s t r a i n t  provided 
1)) hoop Io rces  in the skin.  It mus t  be r e m e m b e r c d ,  however ,  that  the 
cippli(.(i pressures a r c  riot circuirifcrentiatly uni form a t  the Mach  number>  
and ang1c.s 01 a t tack  of  i n t e r e s t .  

5 



LMSC/HREC -47 126 1 ti 

F U T U R E  WORK 

-4s a consequence of the work  per formed by Lockheed under  both this  
contract  and with internal  company funding, i t  i s  c l e a r  that additional work in 
seLrera1 a r e a s  i s  needed. 
ted.  and additional des ign  s tudies  - par t icu lar ly  for  sk in - r ing - s t r inge r  fa i r ings  - 
a r e  a l so  des i r ab le .  
na tu re ,  both have a s  the i r  ul t imate  objective achieving the maximum prac t i ca l  
s t r u c t u r a l  efficiency in l a r g e  nose fa i r ings .  

Some fu r the r  work  on analysis  techniques i s  w a r r a n -  

Though these  two kinds of effor ts  a r e  quite d i f f e ren t  in  

Work on genera l  instabil i ty under combined loads i s  the mos t  des i r ab le  
A l imitat ion of the Baruch-Singer  analysis  used (and analysis  techniques task .  

m o s t ,  if  not a l l ,  a l te rna te  methods)  i s  the fact  that  i t  i s  not valid for  configura- 
tions with s o m e  e lements  buckled. Of pa r t i cu la r  i n t e r e s t  would be compar isons  
of designs having no e lements  buckled with designs allowing skin panels to  
buckle (as was done in  this study).  With this goal in  mind,  Lockheed i s  funding 
s tudies  which have a s  their  goal the development of a be t te r  genera l  instabil i ty 
analysis  technique for  s t r u c t u r e s  with e lements  buckled. 

F o r  the f i r s t  s teps  in  the d i rec t ion  of fu r the r  design s tudies ,  existing 
andlVtica1 tools can be used.  The r ing,  skin and s t r i n g e r  p r o g r a m  developed 
durinz this study i s  suitable in  i t s  p re sen t  f o r m  for  making the f i r s t  of these  
in\  es t igat ions.  ,Also, a Baruch-Singer  genera l  instabil i ty ana lys i s  was p r e -  
pared  during this  study, and was attached to a vers ion  of the r ing - s t r inge r  
design p r o g r a m  for  use in  the cyl indrical  section. 
avai lable  t ime and manpower prevented i t s  u se  in  making extensive p r e l i m i -  
na1-J. des ign  s tudies .  

However ,  l imitat ions of 

If very  l a r g e  fa i r ings  a r e  to be built for  Saturn V (or  o the r )  h a m m e r -  
head vehic les ,  i t  i s  perhaps  worthwhile to make  design s tudies  that take into 
account economic effects of fabr icat ion p a r a m e t e r s  a s  well  a s  s t ruc tu ra l  effi- 
ciency effects  of these  p a r a m e t e r s .  Much of the routine economic work  could 
be automated along with the s t r u c t u r a l  design work. 

6 
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Sr: ction 
o f  Shroud 

TABLE I 

K E Y  ASSUMPTIONS i W D E  IN OPTIMIZATION STUDIES 

Ring -Skin Ring -Skin-Strin ge r 
Construct ion Construction 

Mate rial 

L oad ing C o nd it i o n s 

Venting 

Aerodynamic  
He a t  i ng 

Charac t e r i s t i c s  of a high s t r eng th  aluminum 
al loy were  used. 
as 40 ksi ;  e l a s t i c  modulus used  was  10.5 x 
106 psi .  

The e l a s t i c  l imi t  was  taken 

Cr i t ica l  combinations resu l t ing  f r o m  p r e s s u r e ,  
d r a g ,  and bending moment  w e r e  calculated 
within the p rogram.  These  ex te rna l  loads 
were  de te rmined  at  M = 1.5, Q = 8.5O, and 
q = 765 P S F ,  which a r e  r ep resen ta t ive  design 
conditions f o r  Saturn- type vehicles .  

- 

Component loads a r e  a function of venting 
cha rac t e r  is t ics  which s e t  i n t e rna l  prc: s s u r  e 
t ime h is tor ies .  F o r  m o s t  of the s tud ie s ,  it 
was a s sumed  tha t  i n t e rna l  p r e s s u r e  and f r e e -  
s t r e a m  p r e s s u r e  a re  equal  a t  crq max. (The  
significance of this assumpt ion  w a s  examined 
in  ce r t a in  instances.  ) 

Studies w e r e  ma+ both with and without con-  
s ider ing aerodynamic  heating effects .  When 
heating effects  were  cons idered ,  the skin w a s  
t r ea t ed  as  a hea t  s ink,  and l imi ted  in t e m p e r -  
a tu re  to 600°F. (See Refe rences  7 and 8. ) 

TABLE I1 

NEAR-OPTIMUM WEIGHTS, USING DIFFERENT 
CONSTRUCTION METHODS 

- 

Cone 

F r u s t u m  

Cylindc r 
- 

--t - - 
, .~ _. . 

1,000 i 2,100 i 

Sandwich 
Construct ion 

.I, 

3 7 5'#. 

600 I 
i - . . - - . . . 

2,000 1 1 
.I, + I .  0 Without t h e r m a l  protect ion - Imposit ion of a 600 F cons t ra in t  will  i nc rease  

the r i n g - s k i n - s t r i n g e r  weight to something less  than 1300 lb i f  no t h e r m a l  
protection is used.  A heat sink design was  not cons idered  f o r  sandwich. 
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